Non-Hermitian P T $\mathcal {P}\mathcal {T}$ -Symmetric Dirac-Pauli Hamiltonians with Real Energy Eigenvalues in the Magnetic Field

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Real Spectra in Non-Hermitian Hamiltonians Having P T Symmetry

The condition of self-adjointness ensures that the eigenvalues of a Hamiltonian are real and bounded below. Replacing this condition by the weaker condition of P T symmetry, one obtains new infinite classes of complex Hamiltonians whose spectra are also real and positive. These P T symmetric theories may be viewed as analytic continuations of conventional theories from real to complex phase spa...

متن کامل

P, T, PT, and CPT invariance of Hermitian Hamiltonians

Currently, it has been claimed that certain Hermitian Hamiltonians have parity (P) and they are PT-invariant. We propose generalized definitions of time-reversal operator (T) and orthonormality such that all Hermitian Hamil-tonians are P, T, PT, and CPT invariant. The PT-norm and CPT-norm are indefinite and definite respectively. The energy-eigenstates are either E-type (e.g., even) or O-type (...

متن کامل

Non-Hermitian Hamiltonians with real and complex eigenvalues in a Lie-algebraic framework

We show that complex Lie algebras (in particular sl(2,C)) provide us with an elegant method for studying the transition from real to complex eigenvalues of a class of non-Hermitian Hamiltonians: complexified Scarf II, generalized Pöschl-Teller, and Morse. The characterizations of these Hamiltonians under the so-called pseudoHermiticity are also discussed. PACS: 02.20.Sv; 03.65.Fd; 03.65.Ge

متن کامل

Non-Hermitian Hamiltonians with real and complex eigenvalues: An sl(2,C) approach

Potential algebras are extended from Hermitian to non-Hermitian Hamiltonians and shown to provide an elegant method for studying the transition from real to complex eigenvalues for a class of non-Hermitian Hamiltonians associated with the complex Lie algebra A1.

متن کامل

Acceleration of the Arnoldi method and real eigenvalues of the non-Hermitian Wilson-Dirac operator

In this paper, we present a method for the computation of the low-lying real eigenvalues of the Wilson-Dirac operator based on the Arnoldi algorithm. These eigenvalues contain information about several observables. We used them to calculate the sign of the fermion determinant in oneflavor QCD and the sign of the Pfaffian in N = 1 super Yang-Mills theory. The method is based on polynomial transf...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Theoretical Physics

سال: 2014

ISSN: 0020-7748,1572-9575

DOI: 10.1007/s10773-014-2410-4